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A simple criterion that allows one to determine whether or not a given wave spectrum will generate
zonal flows, is derived and analyzed. In the context of a coupled drift wave–zonal turbulence, the
results are pertinent to the limit of small zonal flow damping, #d→0, in which previous analyses
found that the turbulence vanishes. However, the practically important issue of the drift wave
amplitude threshold for zonal flow excitation was not resolved. In its formal mathematical
appearance, the criterion obtained is similar to the well-known Penrose criterion that is used for
stability analysis of stellar distributions and particle distributions in plasmas. By contrast, the
derived criterion, being applied to wave quanta rather than to particle distribution, shows that even
‘‘normal’’ !wave density decaying with wave number" distributions with an intensity above the
threshold should generate zonal flows. This clearly points at the ubiquity of the latter. © 2001
American Institute of Physics. $DOI: 10.1063/1.1330204%

I. INTRODUCTION

In many natural and laboratory environments, the equi-
libria of fluids or plasmas are characterized by stratification
in one direction !say radial, frequently prescribed by gravity"
while remaining homogeneous across it !say, azimuthally".
In plasmas, the magnetic field determines the equilibrium
configuration as the bulk rotation of fluids generally does. In
such systems the gradient-specific modes are long known to
be able to propagate in the direction of translational symme-
try, i.e., perpendicularly to the gradient !e.g., Ref. 1". These
waves generate turbulent transport in the radial direction,
that compromises confinement in fusion devices !see, e.g.,
Refs. 2 and 3 for a review".

On the other hand, the drift-type turbulence is also ca-
pable of generating the so-called zonal flows which, in the
most general case, are alternating, random jets streaming
along the symmetry direction.2–4 Their importance for con-
finement physics is mainly due to their ability to suppress the
transport driving turbulence, essentially through
shearing.5–11 The mechanism of their generation is rather
universal. Its key element is the turbulent Reynolds stress
tensor whose divergence has a nonvanishing azimuthally av-
eraged projection along the flow direction. One may also
think of zonal flow generation as of a modulational instabil-
ity of the Reynolds stress generated by the drift wave
‘‘gas.’’ 12–15

When the zonal flows are excited, they form an environ-
ment for the parent drift waves. A coupled system of
‘‘predator–prey’’ equations has been derived in Ref. 15 to
self-consistently describe these two components of wave tur-
bulence. This system has been analyzed in Refs. 15 and 16
under a condition in which the linear growth of drift waves
was in a permanent, approximate balance with their nonlin-
ear steepening. In other words, the system was assumed to be
far from linear stability, rendering the generation of zonal

flows nonresonant. Two remarkable features have been re-
vealed in this regime. First, the modulational instability de-
velops in the presence of a ‘‘normal’’ (&Nk /&k!0) popula-
tion of the drift wave quanta. Second, there is no amplitude
threshold for the instability except one set by the zonal flow
damping #d . The last aspect is particularly interesting in the
limit of small #d when Nk turns out to scale as Nk'#d , so
that even in the case of vanishing Nk(#d→0) the zonal flow
generation seems to be efficient enough to suppress the drift
wave turbulence and transport.

The threshold-free generation of zonal flows could be at
least tentatively attributed to the above-mentioned nonreso-
nant regime that a priori requires a sufficiently strong drift
wave nonlinearity to be able to balance their linear growth,
so that the zonal flows develop on this background. One
might argue then that in the limit #d→0, when Nk becomes
vanishingly small and should behave linearly, such a balance
would be no longer maintained. Then, two further possibili-
ties would emerge. The first should occur if still there is an
amplitude threshold N th for zonal flow generation, so that
when Nk drops below N th , the drift wave turbulence is no
longer suppressed, since zonal flows vanish. Thus, drift wave
intensity must remain at some residual level (N th ; even if
#d→0. The second possibility should be expected if the
zonal flows are indeed generated without the threshold. This
means that there must be an essentially complete suppression
of the drift wave turbulence when #d→0, as obtained in
Refs. 15 and 16 for the case of nonresonant generation. Thus,
in order to understand the dynamics of the coupled drift
wave–zonal flow turbulence for small #d , it is necessary to
study the purely ‘‘linear’’ problem of modulational stability
of the drift waves. Namely, given a drift wave spectrum
when both the linear growth rate and nonlinear self-
interaction may be ignored, one derives a linear dispersion
equation for the resonant zonal flow generation rate. Note

PHYSICS OF PLASMAS VOLUME 8, NUMBER 5 MAY 2001

15531070-664X/2001/8(5)/1553/6/$18.00 © 2001 American Institute of Physics



that the role of the distribution of the drift wave quanta Nk
here is very much similar to the equilibrium particle distri-
bution f 0(v) in plasmas when the latter is subjected to sta-
bility analysis.

It should be noted that such studies do exist. For ex-
ample, this approach was pursued recently in Refs. 17–19.
However, these analyses were restricted to the case of a
monochromatic !or quasimonochromatic18" spectra of the
drift waves. They also revealed essentially no amplitude
threshold in the nondissipative limit, which might be a result
of the monochromatic treatment. Returning to the nonreso-
nant regime of zonal flow generation addressed in Refs. 15
and 16, it should be emphasized that the instability does not
require any degree of monochromaticity. Nor is the ‘‘inverse
population’’ &Nk /&k"0 of the drift wave quanta necessary,
as mentioned before and which, at least in azimuthal wave
number k) , is present in the monochromatic case. It is per-
haps more important to mention here that the interaction of
the drift waves with the zonal flow generally results in sig-
nificant spreading of the drift wave spectrum in radial wave
number kr ,15,16,20 so that the quasimonochromatic approxi-
mation may !at best" be valid only during the initial stage of
this interaction, provided that the drift wave linear growth
rate is consistent with such an approximation. Thus, taking
the above motivations and the importance of the case of
weak collisionality in which the zonal flow mechanism of
transport suppression appears to be particularly efficient, one
needs to perform the stability analysis for an essentially ar-
bitrary drift wave spectrum. The threshold issue ought to be
the major concern of such an analysis. This will be our main
goal in the present paper.

In the next section we give a brief derivation of the
dispersion equation for the zonal flow generation in the most
straightforward case of the planar geometry !keeping, how-
ever, r, ) notations for mainly historical reasons", very much
in line with, e.g., Ref. 17. Next, we evaluate a general crite-
rion providing the necessary and, under some obvious con-
straints also, the sufficient condition for the instability of
drift wave spectra. This will be used for the further analysis
of a narrow and a broad spectra, which set the limits for the
quasimonochromatic theory and, more importantly, ad-
dresses the issue of the validity of the drift wave–zonal flow
self-regulation model in the case of small collisionality.

II. BASIC EQUATIONS

As a model for the description of the zonal flow–drift
wave turbulence, it is convenient to adopt one of the magne-
tohydrodynamics reduction schemes, e.g., one suggested in
Ref. 21. The final evolution equation reads17,21 as

! &

&t #V0
&

&) " *̃#V*
&*̃

&)
$+s

2! &

&t #VE“ ",!
2*%0, !1"

where * is the electrostatic potential, that consists of the
poloidally symmetric zonal flow part - and the drift wave
part *̃ , *%-#*̃ . Accordingly, V0 is the zonal flow part of
the EÃB drift, V0%(c/B)&-/&r , while VE%(c/B)e#Ã“* .
The remaining notations are also standard, V*
%$(cTe /eB)d ln n0 /dr, +s

2%Te /M.ci
2 %cs

2/.ci
2 . Averaging

this equation over poloidal and toroidal directions, which
will be denoted by /•0, and taking into account /*̃0%0, one
obtains then for the zonal flow generation,
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After the Ansatz -'exp($i1t#iqr) and assuming that q
&2kr , where 2kr denotes the width of the drift wave spec-
trum in kr , the last equation transforms to

$i1-q%
c
B & krk)'*̃k'2dk. !3"

As explained in the Introduction, our primary goal is to study
the limit of small-amplitude drift waves and vanishing linear
instability drive as pertinent to the threshold phenomena of
the zonal flow generation. Therefore, the perturbation to the
drift wave spectrum caused by the emerging zonal flows may
be described in terms of the eikonal equation of the weak
turbulence,
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where Nk%(1#k!+s
2)2'e*̃k /Te'2 is the density of the drift

wave number of quanta and .k%k)V*(1#k!
2 +s

2)$1 is their
frequency. In this equation the drift wave self-nonlinearity
(Nk

2 is neglected along with the linear instability term for
the reasons mentioned above, whereas the zonal flow–drift
wave nonlinear terms ((V0Nk) are retained and are suffi-
cient for a description of the finite-amplitude zonal flows.
The latter is because the zonal flow self-nonlinearity van-
ishes due to the symmetry of the flow (&/&)%0) and the
‘‘vector’’ character of nonlinear term in the underlying equa-
tion !1". The importance of a finite-amplitude treatment of
zonal flow perturbations, even in the case of a ‘‘weakly tur-
bulent’’ drift wave spectrum, is due to the possibility of their
secular growth via Eq. !2" or by an existence of residual
flows. We will discuss this last issue in the concluding sec-
tion. Now we assume that the drift wave spectrum consists of
an equilibrium part Nk

0, subject to the stability analysis and a
perturbed part Ñk%Nk$Nk

0, for which, from Eq. !4", one
obtains

!$i1#iqVgr"Ñk%$
c
B k)q2

&Nk
0

&kr
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where Vgr%&.k /&kr . Note, since Nk
0 is an equilibrium spec-

trum, according to Eq. !3" it must satisfy

& Nk
0

!1#k!+s
2"2

krk) dk%0. !6"

Substituting then Ñk from Eq. !5" into Eq. !3" one obtains the
following dispersion equation for 1;15,17

1%q2cs
2+s
2& krk)

2

!1#k!
2 +s

2"2
&Nk

0

&kr
dk

1$qVgr
. !7"

As we mentioned before, this equation was used, e.g., in Ref.
17 to analyze the stability of a monochromatic drift wave
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Nk
0'N03(k$k0). In this case, the instability criterion was

shown to be dependent only on k0 but not on N0 . To con-
sider the case of a general spectrum Nk

0, further evaluation of
this dispersion relation is needed. This will be the subject of
the next section.

III. INSTABILITY CRITERION

First, using the expression

Vgr%$2
V*krk)+s

2

!1#k!
2 +s

2"2
, !8"

we can re-write Eq. !7" to the following form.

1#
qcs

2

2V*
& k)dk

1$qVgr

&Nk
0

&kr
%0. !9"

This clearly suggests the following variable transformation:
(kr ,k))!(V ,k)), where V%Vgr(k). In addition, we use the
phase velocity C%1/q instead of 1, which removes the
parameter q from the dispersion equation. The latter then can
be rewritten as

4!C "51$
cs
2

2V* &$V0

V0 K!!V "dV
V$C %0, !10"

where V05maxVgr(k)%'V*'/4 and

K!V "% ( N0!V ,k)"k)dk) . !11"

The integral over k) is implied to be taken along the contours
V%const as shown in Fig. 1. The function K(V) is a key to
understanding the source of instability free energy. It consti-
tutes the distribution of the azimuthal component of the drift
wave momentum as a function of group velocity, which is in
resonance with the phase velocity of the zonal flow pertur-
bation. As we shall see, no net ) momentum of the drift

wave distribution is required for zonal flow generation. This
is because no net momentum of the zonal flow is required
i.e., no mean flow, only zonal shear needs to be generated.

The function K(V) may be calculated in principle for
any given distribution Nk

0. Then, we need to find whether Eq.
!10" has zeros in the upper half-plane of the complex vari-
able C !with no loss of generality we may assume that q
"0". This may be examined by using the standard Nyquist’s
method. First of all, the function 4(C)$1 is a Cauchy-type
integral which, for a ‘‘reasonably good’’ K(V), is a holo-
morphic function of the degree $2 in the entire C plane cut
along the interval ($V0 ,V0) !it vanishes at C→6 as
(C$2". It has a jump across this interval 24(C!)
%$7(cs

2/V*)K!(C!), where C%C!#iC". We consider a
closed contour 8 in the upper half-plane of variable C con-
sisting of a semicircle of infinite radius and of the real axis
C"5JC%0# running in the positive direction. Within 8,
the function 4(C) has no singularities, and the number of
zeros that 4(C) has there is equal to the number of rotations
that its image 8̂%4(8) on the 4 plane makes around the
origin 4%0. The contour 8̂ starts and ends at 4%1 (C
%6) and runs also in the positive direction. It makes no
rotations around the origin if at every point C!%Cr on the
real axis of the C plane where J4(Cr)%0 and J4!(Cr)
!0, the condition R4(Cr)"0 is met. Rewriting Eq. !10" on
the real axis as

4!C!"51$
cs
2

2V*
P&

$V0

V0 K!!V "dV
V$C!

$i7
cs
2

2V*
K!!C!",

!12"

we can formulate the sufficient stability condition as follows.
If at all points where K!(C")%0 and K"(C")"0, the in-
equality

cs
2

2V* &$V0

V0 K!!V "dV
V$C!

!1 !13"

holds, then the distribution N0(k) in !11" is stable.
In contrast to a formally very similar condition for the

stability of plasma velocity distributions !see, e.g., Ref. 22",
the condition opposite to !13" does not lead automatically to
the instability. This is because Eq. !10" does not contain any
free parameter of the stability problem, like the wave num-
ber. Thus, the situation in which there is another point where
the contour 8̂ crosses the real axis, C!%Cr2 , J4%0 but
J4!(Cr2)"0 and R4!0 cannot be excluded by varying
the free parameter. Clearly, in this situation the point 4%0
may not be within 8̂ . Nevertheless, the condition opposite to
!13" can be shown to be sufficient for instability if the func-
tion K(V) has not too many extrema !specified later" within
the interval ($V0 ,V0). Fortunately, this is the case for prac-
tically all interesting spectral shapes Nk

0.
In order to turn the above necessary condition into a

sufficient one, it is natural to start with the constraint !6". For
practical purposes we confine our consideration to spectra
that are symmetric in kr :N0(kr ,k))%N0($kr ,k))
or k) :N0(kr ,k))%N0(kr ,$k)), or in both. Any of these
conditions automatically satisfies Eq. !6", as well. In addi-

FIG. 1. The contours of the radial component of the group velocity V
%const. The wave packet is located at k%k0 on the kr$k) plane. The
special lines &V/&kr%0 and &V/&k)%0 cross at a point where V(k) reaches
its extremum $V*/4.

1555Phys. Plasmas, Vol. 8, No. 5, May 2001 On the stability of drift wave spectra . . .



tion, the function K(V) becomes symmetric, K($V)
%K(V). According to Eq. !13", this means that the contour
8̂ is symmetric with respect to the real axis of the 4 plane
since the 8̂ images of the half-axes $6!C!!0 and 0
!C!!6 are complex conjugates on the 4 plane, Fig. 2.
Therefore, the situation in which the contour 8̂ crosses the
real axis at R4!0 !necessary for the instability" and then
recrosses it again at R4!0, so as to leave the origin outside
it, may only occur when the total number of crossings $i.e.,
the number of extrema of K(V) is five or more !note that this
number must be odd by symmetry"%. In the case of only one
or three extrema, the condition opposite to !13" guarantees
instability. We can reformulate it as follows. If the symmet-
ric function K(V) has less than five extrema in the interval
($V0 ,V0) and at least at one point C! where K!(C!)%0,

cs
2

V* &0
V0 VK!!V "dV

V2$C!2
"1, !14"

the distribution N0 is unstable. Clearly, the extremum of
K(V) at V%C! must be a minimum. In the case of larger
number of extrema one can also formulate the sufficient in-
stability conditions involving some obvious relations be-
tween integrals !14" taken at different points C! where the
function K reaches its extrema. However, these are not very
practical, so that in the cases of sufficiently complicated
function K(V), direct plotting of 8̂ using Eq. !12" should be
more efficient. Moreover, in the next two sections, we con-
sider the cases of a narrow and a broad wave packet for
which the form of instability condition given by Eq. !14" is
appropriate.

A. Instability of a narrow wave packet

To be specific, let us consider the case of a narrow
Gaussian wave packet,

N0!k"%
N0

27!k2 )exp! $
'k$k0'2

!k2 "#exp! $
'k$k1'2

!k2 " * ,
where k1r%$k0r but k1)%k0) to guarantee the stationarity
condition !6". Here we normalize the wave number k to +s

$1.
The function K(V) has two minima at V%'V(k0) and a
maximum at V%0 !by symmetry". Assuming 2k&k0 we can
expand V(k) at k%k0 ,

V!k"%V!k0"#
&V
&k+k%k0

"!k$k0". !15"

Clearly, the wave packet should be separated from the caus-
tic &V/&kr5&2./&kr

2%0 by at least 2k . Otherwise, the qua-
dratic term in k$k0 needs to be included. Expressing kr
through V and k) and substituting into Eq. !11", we have

K!V "%
Vr

!Vr
2#V)

2

k0)N0
!72k

exp! $
$V$V!k0"%2

!Vr
2#V)

2"2k2" . !16"

We have denoted Vr ,)5&V/&kr ,) at k%k0 . Substituting the
last expression into the instability condition !14", we obtain

N0
!1#k0

2"3

2k2
k0)
2 !1#k0)

2 $3k0r
2 "

k0)
2 !1#k0)

2 $3k0r
2 "2#k0r

2 !1#k0r
2 $3k0)

2 "2

"2
+s
2

Ln
2 , !17"

as a necessary and sufficient condition for the instability,
where Ln

$1%d ln n0 /dr.
In agreement with the monochromatic case analyzed in

Ref. 17, the instability indeed requires wave localization for
which kr

2 is smaller than its value on the caustic &V/&kr
%0, i.e., kr

2!(1#k)
2)/3. However, there is also an amplitude

threshold of the order of N th((+s /Ln)22k2+s
2 for the onset

of modulational instability of a packet that has a finite width
2k .

B. Instability of a broad wave packet

Let 2k(1 and normalize N as to keep the total number
of quanta the same, as already considered for the case of a
narrow packet. Then

K!0 "%$2&
0

6

N!kr%0,k)"k)dk)5$N0 .

In the case of a broad distribution N0(k) the function K(V)
increases monotonically from its minimum value $N0 at V
%0 to 0 at V%V0 . For the sake of simplicity we approxi-
mate K(V) as K(V)%K(0)(1$V2/V0

2). Substituting this
into the instability condition !14" we finally obtain

N0"
+s
2

8Ln
2 . !18"

Note that this instability condition does not formally depend
on the width or the anisotropy of the distribution. However,
an approximate isotropy of the spectrum has already been
assumed by its derivation. According to Eq. !17" spectra
elongated in kr would generally require higher amplitudes to
become unstable.

IV. CONCLUSIONS AND DISCUSSION

We have considered the modulational stability of a drift
wave gas with respect to the zonal flow generation. The de-
rived instability criterion indicates that narrow spectra
(2k+s&1), in order to be unstable must be localized within
the caustics in kr$k) plane, i.e., kr

2+s
2!(1#k)

2+s
2)/3, in

FIG. 2. The image of the contour 8 on the 4 plane. The solid curve maps
the negative half-axis C!!0 while the complex conjugate part !dashed
curve" maps the positive half-axis C!"0 on the 4 plane.
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agreement with the monochromatic case.17 Broad spectra, if
not extended significantly in kr , appear to be generically
unstable as far as their spectral shape is concerned. However,
in both cases there exists a significant threshold for the zonal
flow excitation. The characteristic amplitude for drift wave
threshold in terms of the number of quanta, is, in both cases,
of the order of +s

2/Ln
2, although narrow packets are excited

more easily due to the additional threshold reduction by a
factor of the order of 2k2+s

2&1.
The back-reaction from the zonal flow on the parent drift

waves is clearly stabilizing. In essence, it can be character-
ized by shearing15,16 and thus by the diffusive spreading of
the drift wave spectrum in kr . A key for understanding of
the stabilization is the function K(V) that was identified as
the azimuthal momentum distribution of the drift wave gas
expressed in terms of its group velocity. Since shearing gen-
erally transports plasmons across the line &V/&kr%0 to
larger kr , the positive contribution to the K(V) integral !11"
from the larger kr will increase, while the negative contribu-
tion from smaller kr will decrease. This should result in the
stabilization of modulational instability according to the cri-
terion !14". Physically, this process implies a systematic de-
crease of the drift wave energy, since thereby the wave fre-
quency decreases, subject to the constraint of the number of
quanta held constant.

It should be remembered that the above consideration, as
well as the treatment of the incoherent zonal flow generation
in the accompanying paper,16 focus mainly on stationary so-
lutions and their stability. Nevertheless, our results may be
used !with some caution" for considering time dependent
evolution of coupled drift wave–zonal flow turbulence. The
main merit of these analytical results is an explicit identifi-
cation of critical parameters, their functional interrelations,
and the capacity to scan the system behavior over a broad
range in a multidimensional parameter space. What is par-
ticularly pertinent to the subject of the present paper is the
case of the small and vanishing growth rate of the drift wave
instability and collisional damping of the zonal flow. The
importance of this regime is suggested by the recent result of
Refs. 23 and 24, which demonstrated an asymptotic irrel-
evance of collisionless zonal flow damping. Let us consider
first the case in which the latter is zero (#d%0).

Based on the above discussion of the stabilization
mechanism, one can expect that an initially unstable drift
wave spectrum will relax to a quasiequilibrium state near the
threshold of modulational instability due to diffusion in kr by
self-generated zonal flows. !This is quite similar to the qua-
silinear relaxation of unstable particle distributions, like
‘‘beam’’ or ‘‘loss-cone’’ instabilities." Zonal flows will be-
come thus marginally stable, but they still will maintain the
diffusive flux !since they do not decay, #d%0" of linearly
unstable !e.g., due to the ion temperature gradient" drift
waves to larger kr , where they can be linearly absorbed by
particles. For this steady state to exist, the linear growth rate
of the drift waves # l must still be larger than some critical
level, # l'“T$“Tc"#cr . Indeed, if we decrease # l below
critical !# l!#cr , keeping #d%0" the shearing damping rate
of the drift waves by the undamped zonal flows will exceed
their linear production rate, and ultimately eliminate them,

while the residual zonal flow will remain. This critical
growth rate may be calculated from the quasilinear equation
describing the evolution of the drift wave spectrum,15

&Nk
0

&t $
&

&kr
Dk

&Nk
0

&kr
%#kNk

0, !19"

where D is the diffusivity of drift waves by zonal flow:

Dk%9
q
k)
2q4+s

2cs
2! 1$

q2+2

1#k!
2 +s

2" 23!1q$qVgr"'-q'2.

!20"

This equation essentially implies that for a steady state #cr
(Dk /2k2 $see Eq. !17" of Ref. 16 for a more rigorous WKB
result%, which relates # l with the level of the residual zonal
flow. In other words, if the actual # l!#cr , the steady state
cannot be maintained and the drift waves are damped by
shearing. Thus, if we now formally set # l→0, there should
be extremely weak drift wave fluctuations with only the re-
sidual zonal flow. Such a situation may have at least quali-
tatively something to do with that observed in numerical
simulations by Dimits et al.7 and commonly referred to as
the ‘‘Dimits shifts’’ regime. It was identified with an offset
in # l by #cr on the Q$# diagram, where Q is the radial heat
flux that is presumably proportional to the drift wave turbu-
lence level Nk

0. For 0!# l!#cr , a state of zonal flows with
negligible transport is observed, while for # l"#cr , heat flux
Q increases. Note that in our simplified treatment the quan-
titative determination of #cr !i.e., residual zonal flow ampli-
tude" would require a time dependent solution for the re-
sidual, undamped zonal flow specified during its generation
phase, so that #cr will depend on the prehistory of the turbu-
lence evolution to this steady state. In particular, the above
scenario requires that the zonal flow is already generated in
some way and then prevents the drift waves from growing
above the threshold. This can be achieved, e.g., if an initially
narrow, drift wave packet is spread in kr upon generating
zonal flows thus rising both the threshold $by the factor
(2k+s)$2(1% and #cr . The state established in this way
may now very well meet the above conditions, namely # l
!#cr and Nk

0!N th so that the drift waves will be damped via
Eq. !19" while the zonal flow will sustain !if #d%0". Other-
wise !M. N. Rosenbluth, private communication", if we had
started from a broad wave packet with a sufficiently high
threshold of zonal flow generation, the latter could have
never been excited due to the strong drift wave damping
caused by their tree mode coupling.

It should be stressed that the above consideration is ir-
relevant to parameter regimes in which both the linear driver
# l and collisional damping #d are sufficiently strong !well
above the threshold" so that a robust steady state with the
presence of both turbulence components is established. For
yet higher #d , however, its uniqueness is examined in the
accompanying paper,16 where the possibility of a further bi-
furcation is demonstrated.

Another point to emphasize is that the order of the limits
!first #d→0 then # l→0" is clearly important here. Indeed, if
we first fix small #d"#dcr"0 and let # l→0, then after the
drift waves are sheared down to the threshold level N th
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(+s
2/Ln

2 and stop generating the zonal flows, the latter
should be damped as well !#d-finite", producing no more
shearing while residual drift wave turbulence may survive.
To realize this scenario we need the zonal flows to be
damped faster than the shearing rate #d"#dcr(D/2k2 since
D/2k2 is the rate at which the drift waves themselves are
indirectly damped by zonal flows. Notwithstanding the rather
semiqualitative character of the above arguments, they
clearly point at the intrinsic incompleteness of any two-
dimensional !2D" !Q vs # l" study of the ‘‘shift’’ phenomena.
The onset of the turbulent transport at small # l and #d !col-
lisionality" can be fully understood only if Q is studied as a
function of both !#d and “T$“Tc" parameters on an equal
basis.

If we leave aside these rather peculiar limiting cases, the
emerging steady-state picture does not differ in general from
that considered in Refs. 15 and 16 !where the self-
nonlinearity was also included into the drift wave balance",
which was dictated by the consideration of reasonably large
assumed #d . This resulted in a linear scaling of the drift
wave turbulence level with the collisional damping of zonal
flows, which implied the turbulence vanishes for the un-
damped zonal flows and thus entered the regime where the
self-nonlinearity of the drift waves can be neglected. Moti-
vated by this, in the present paper we have realized that the
behavior of the coupled drift wave–zonal flow turbulence, in
the parameter region where the level of the both is small,
may generally have a hysteretic character and the residual
turbulence may remain in either component, depending on
how we approach the origin # l%#d%0, as described above.
This is schematically depicted in Fig. 3.
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